原子力 と は| 有名人の最新ニュースを読者にお届けします。

私たちは、人々が好きな有名人について読んで、それについて気分を良くすることができるスペースを作りたかったのです.私たちは、人々が有名人についてポジティブな方法でゴシップできる場所を作りたかった.
私たちは、何年もの間、日本のエンターテインメント ニュースを生き、呼吸してきた情熱的なエンターテインメント ニュース ジャンキーの小さなチームです。
私たちは、有名人の最新のゴシップを分析し、日本のポップ カルチャーの最新トレンドを分析することを何よりも愛しています。私たちはエンターテインメントのすべてに夢中になっており、私たちの情熱を世界と共有したいと考えています。当サイトへようこそ!
原子力 と は, /%e5%8e%9f%e5%ad%90%e5%8a%9b-%e3%81%a8-%e3%81%af,
Video: 原子・演習(2)
私たちは、人々が好きな有名人について読んで、それについて気分を良くすることができるスペースを作りたかったのです.私たちは、人々が有名人についてポジティブな方法でゴシップできる場所を作りたかった.
私たちは、何年もの間、日本のエンターテインメント ニュースを生き、呼吸してきた情熱的なエンターテインメント ニュース ジャンキーの小さなチームです。
原子力 と は, 2020-04-30, 原子・演習(2), 関連する講義動画は
https://youtu.be/MdcgpY-S_eM, phys2fit
,
呼称[編集]
日本語では、「原子力-」(「原子-」)と「核-」は接頭辞としてほぼ同義である。このうち「核」は核兵器や核燃料など軍用や燃料として、「原子力」は原子力発電や原子力空母など商用や動力源に使い分けられることが多く、これに対する批判もある[3][4]
[注釈 1]。同様に、「反核」は原子力全般への反対を指す語であるが、日本では「反核」が「反核兵器」に範囲を縮小され、「反原子力」が「反核発電」に範囲を縮小される傾向が目立つ。[独自研究?]
英語では nuclear weapon (核兵器)、nuclear power (核発電)、nuclear submarine (核潜水艦)というように、”nuclear” (核)でほぼ統一されている[注釈 2]。独語の “Atom” と “Nuklear” はほぼ同義語であり、軍用か商用かを問わずに用いられる。英語の nuclear power plant(直訳:核発電所)に相当する語として、独語では Atomkraftwerk (直訳:原子力発電所)と Kernkraftwerk (直訳:核発電所)の両方が用いられている。中国語では、忠実な訳語を用いて「核電廠」という。
概要[編集]
1978年に原子力の安全確保の充実強化を図るため、原子力基本法の一部を改正し、原子力委員会から分離、発足。国家行政組織法上の第8条審議会と同等の機能を有していた(ただし、国家行政組織法第1条の規定に基づき、内閣府は国家行政組織法の適用から除外されているため、中央省庁再編以降は内閣府設置法第37条に審議会等としての根拠を有する)。
原子力安全委員会の職務は原子力の研究、開発および利用に関する事項のうち、安全の確保に関する事項について企画し、審議し、および決定することであった。
具体的な役割については下記の通り。
- 以下の事項について企画し、審議し、及び決定する。
- 原子力利用に関する政策のうち、安全の確保のための規制に関する政策に関すること
- 核燃料物質及び原子炉に関する規制のうち、安全の確保のための規制に関すること
- 原子力利用に伴う障害防止の基本に関すること
- 放射性降下物による障害の防止に関する対策の基本に関すること
- 第一号から第三号までに掲げるもののほか、原子力利用に関する重要事項のうち、安全の確保のための規制に係るものに関すること。
- 「特定放射性廃棄物の最終処分に関する基本方針」について経済産業大臣に意見を述べること
- 核燃料物質の関連事業を行おうとする者の指定や許可について担当大臣に意見を述べること
- 原子力緊急事態宣言の解除について内閣総理大臣に意見を述べること
- 原子力緊急事態宣言の技術的事項について原子力災害対策本部長に助言すること
- 原子力防災管理者通報義務や原子力緊急事態宣言の政令の制定や改廃について主務大臣に意見を述べること
- 定期報告を受け、災害防止のために必要な措置を講ずるために担当大臣に意見を述べること
- 定期報告に関して原子力事業者等の調査をすること
しかし、業者を直接規制することはできない。
従来、日本の原子力安全について業者に対して直接安全規制するのは規制行政庁(経済産業省原子力安全・保安院、文部科学省等)であり、規制行政庁から独立した本委員会がさらにそれをチェックする多層的体制となっていた。専門的・中立的な立場から、原子炉設置許可申請等に係る2次審査(ダブルチェック)、規制調査その他の手段により、規制行政庁を監視、監査していた[2]。

概要[編集]
原子力基本法(1955年12月成立)に基づき、国の原子力政策を計画的に行うことを目的として1956年1月1日に総理府の附属機関(のち審議会等)として設置され、委員長には国務大臣(科学技術庁長官)が充てられ、委員の任命には両議院の同意が必要とされた。
2001年1月6日の中央省庁再編に伴い内閣府の審議会等の一つとなり、委員長は国務大臣をもって充てるポストではなくなった(委員と共に両議院同意人事の対象となった)[1]。
2011年3月11日の福島第一原子力発電所事故を受け、マスコミの注目を集めるようになる。2012年、毎日新聞は原子力委員会が原発推進側だけを集め「秘密会合」を持ったと報道し、委員会開催運営のずさんさを指摘した[2]。これに対し、当時の委員長代理であった鈴木達治郎は、議事録をとらなかったことは反省点としつつも、どのような組織にもある内部の作業会合であり、「この会合によって報告書の内容が書き換えられた」という毎日新聞の報道は誤解である、と述べている[3][4]。
原子力委員会は次の事項について企画し、審議し、及び決定する権限を有する。
- 原子力利用に関する政策に関すること
- 関係行政機関の原子力利用に関する事務の調整に関すること
- 関係行政機関の原子力利用に関する経費の見積り及び配分計画に関すること
- 核燃料物質及び原子炉に関する規制に関すること
- 原子力利用に関する試験及び研究の助成に関すること
- 原子力利用に関する研究者及び技術者の養成及び訓練に関すること
- 原子力利用に関する資料の収集、統計の作成及び調査に関すること
- 原子力利用に関する重要事項に関すること
歴史[編集]
初期[編集]
1942年、米国シカゴ大学のエンリコ・フェルミが、実験炉で原子力発電の原理となる核分裂の連鎖反応を行うことに成功した。原子力発電は1951年に発電を行った実験炉、EBR-Iから始まる。EBR-Iの当初の発電容量は1kWであった。世界最初の原子力発電所は、1954年6月に運転を開始したソビエト連邦のオブニンスク原子力発電所[3]である。ソ連、アメリカ以外に、イギリス、カナダ、フランス、ノルウェーなどで原子炉がつくられた。
法整備(例えばアメリカのマクマホン法(正しくは「1946年原子力法」 1946年7月)やプライス・アンダーソン法など)や、国同士の協定の締結(西側諸国に対抗してソ連を中心とした締結など)も進んだ。1954年7月に国際連合において原子力に関わる国際会議、第1回ジュネーブ会議が開催された[3]。
西側において初めての商用原子力発電所となるのは、イギリスのコールダーホール原子力発電所1号炉である。運転開始は1956年10月17日であり、出力6万キロワット、炉の形式は黒鉛減速炭酸ガス炉 (GCR) であった。後にこの形式の炉はコールダーホール型、あるいはマグノックス炉と呼ばれた。なお、コールダーホール原発は2007年9月、老朽化のため爆破解体された。
アメリカでは、シッピングポート発電所が初となる。運転開始は1957年12月18日、出力は10万キロワット、炉の形式は加圧水型原子炉(PWR)であった。なお、シッピングポート発電所は1982年10月1日に閉鎖された。アメリカでの原子炉発注ブームは、1966年から1974年までの9年間であった[4]。
フランスでは、1964年2月に運転を開始したシノンA1号炉が最初である。出力8万4千キロワット、炉の形式はGCRであった。
スリーマイル以後の原子力撤廃運動[編集]
アメリカでは、1966年から1974年までの原発発注ブームの後に起こった1979年3月のスリーマイル島原子力発電所事故以来、原発の新設計画が停止されていた[注釈 1]。2001年からのジョージ・W・ブッシュ政権が推進政策に転換(原子力ルネサンス)し、法人税控除などの優遇措置が講じられ、アメリカでついに新規原発の建設が再開されることとなった[5]。当政権期に原発新設が30基分も計画されたが、2011年6月までに1基も建設工事が始まっておらず、2010年時点で撤退が目立ち始めるようになった[4]。原発新設の動きは地球温暖化対策を重点に置くバラク・オバマ政権にも引き継がれた。その結果、事故以来初めての原発としてメリーランド州カルバートクリフス原発第3号機が計画中であったが、2010年10月にコスト上のリスクが高いとして中止され、建設中止が30年以上(1970年代半ばから2011年の間)続くことになった[6]。
復活[編集]
こうして、原子力発電所は発電に際していくつかの問題を抱えているため(後述の原子力発電#問題点を参照)、原子力撤廃の流れがあったが、原油の価格高騰と地球温暖化防止を背景として、原子力発電所の建設を推進する動きが再び出てくることとなった[7]。しかし、2000年代後半に鋼材などの材料費が高騰し(例えば、アメリカで150万kwの原子炉を建造する場合、2005年頃には約30億ドルで可能だったのが、2008年には約70億ドルとなった[8])、原子力発電所は政府の支援抜きには語れない存在となっていった[8]。
2002年時点では、原発の数は世界で400基に達し、発電量のトップ5はアメリカ、フランス、日本、ドイツ、ロシアである。発電量に占める割合は、フランス77パーセント、ベルギー57パーセント、ウクライナ44パーセント、韓国36パーセント、日本33パーセントである[9]。
2011年に発生した福島第一原子力発電所事故の影響により、ヨーロッパ諸国では脱原発・再生可能エネルギーへのシフトの機運が高まっているが、アメリカ、日本、フランス、中国、ロシア、韓国、カナダなどの原発メーカーによって、脱原発の道を選んだ一部ヨーロッパ諸国(ドイツ、イタリア、スイス、スペインなど)以外での原発新設の受注を狙っての競争が激化している。
海上原発[編集]
深刻な放射能汚染を引き起こす可能性がある原子力事故を防ぐため、原発は通常、地盤が強固であるなど災害リスクが少ない土地に建設される。一方で、原子炉を動力源とする原子力船(原子力潜水艦を含む)が1950年代から実用化されており、さらにロシアと中国は浮体式で海上を移動可能な水上原子力発電所を開発している。ロシアのロスアトムは、ムルマンスク港内で世界初の海上原発「アカデミック・ロモノソフ」を稼働させたと2018年12月に発表し、今後、シベリア東部の北極圏にあるペヴェクに移動させることを計画している。また中国は南シナ海で領有権を主張する島々への電力供給への利用を想定していると推測されている[10]。
発展途上国における原発建設ラッシュ[編集]
原子力発電所建設のための資金調達は、発注側が自己資本で建設するだけでなく、受注した建設者側が必要な資金を提供し、将来発電所から生じる電気料金などの収入で投資額を回収する、プロジェクト・ファイナンス(PF)方式による建設の傾向が生まれている。一度に工事費用を支払うのが難しい国において、インフラ投資を促進する存在としての役割を担う。
地球温暖化対策として、2009年に鳩山由紀夫首相で鳩山イニシアチブが策定され、原発の積極利用も検討された。鳩山はベトナム首相のグエン・タン・ズンから、ベトナムでの原子力発電所建設の依頼の手紙を受け取った。鳩山は、「ベトナムは日本の原発技術を使うことを検討するだろう」と述べた[11]。2010年10月受注が決まったベトナムの原子力発電所2基建設については、財務省所管の国際協力銀行がファイナンス役として参画している[12]。またこれに続いて交渉継続している(2010年末現在)トルコの原子力発電所建設にも、このプロジェクト・ファイナンスが導入される予定[13]。
またロシアによる原発輸出は、原発の建設を請け負うだけでなく、核燃料供給から人材育成、放射性廃棄物回収までを担うことが強みとなっている[14]。
原理[編集]
原子核反応は核分裂反応と核融合反応の2種類の反応に大別することができる。ただし、核融合反応の利用は実用段階にはなく、現在原子力エネルギーとして実用化されているのは核分裂反応のみである。そのため、単に原子力発電と言う場合は、核分裂反応時に発生するエネルギーを利用した発電を指す。
原子力発電の仕組みを簡単に表現すると、核分裂反応で発生する熱を使って水を沸騰させ、その蒸気で蒸気タービンを回すことで発電機を回して発電しているといえる。火力発電の場合は石油や石炭、液化天然ガスといった化石燃料を燃やして熱を作り出して蒸気を発生させ、その蒸気で蒸気タービンを回すことで発電機を回して発電を行っている。つまり、原子力発電と火力発電は、発生した蒸気でタービンを回し発電機で発電するという点で、同じ仕組みを利用しているといえる。このような蒸気でタービン発電機を回転させ、電力へ変換する発電方法を汽力発電という。
ただ、火力発電と原子力発電ではタービンを回すまでの過程は大きく異なり、またタービンの形式等も異なる。火力発電所との詳細な相違点については後述する。
核分裂反応[編集]
原子力発電は先述した通り、核分裂反応を利用した発電である。核分裂反応とは、何らかの要因で中性子を捕捉した原子が2つまたはそれ以上に分裂することである。ウラン235の中性子吸収に起因する核分裂反応を例に取ると、以下のように記述することができる。
つまり、ウラン235の核分裂の結果、核分裂片以外にも2 – 3個の中性子が発生するのである。この核分裂反応で発生した中性子は、他のウラン235に吸収され順々に核分裂反応が起こっていくことになる。この反応を核分裂連鎖反応といい、連鎖反応の進展程度を示す増倍係数 k が1.0以下の状態を未臨界、1.0の状態を臨界、1.0以上の状態を超臨界という。なお、中性子を吸収したウラン235は必ず核分裂を起こすわけではなく、約16 %の確率でγ線を放出した後、ほぼ安定な(半減期の非常に長い)ウラン236になることがある[1]。
また、核分裂反応時は反応前の質量よりも反応後の質量の方が小さくなる。この質量差がE=mc2の関係式に基づき、膨大なエネルギーへと変わっている。このエネルギーの殆どは熱エネルギーへと変わり、原子力発電ではこの熱エネルギーを元に発電するのである。核燃料中からの熱除去および発電のプロセスに必要な要素が冷却材である。
核分裂反応で発生する中性子は平均エネルギー約1 MeVであり、高速中性子と呼ばれる。熱中性子炉では高速中性子を核分裂反応を起こしやすい、平均エネルギー約 0.05 eVの熱中性子と呼ばれる状態まで減速させる必要がある。減速は中性子と軽い原子核との弾性衝突により行われ、この目的を果たすために必要な要素が減速材である。
なお、核分裂反応の結果発生する中性子の大半は核分裂と同時に発生する即発中性子である。しかし、核分裂片の中には崩壊の途中で中性子を発する物があり、これは遅発中性子と呼ばれる。遅発中性子は原子炉内の全中性子の 0.65 %を占めるのみではあるが、遅発中性子があることにより外乱等に対する制御がしやすくなっている。
原子力についてもっとも重要なこと
「放射線とか放射能ってなに?」のページの「放射線と放射性物質の物理について知っておいたほうがいいこと」のところで、ぼくらの身のまわりで物質が普通に変化するときには原子核は「びくともしない」ことを説明した。原子力というのは、一言でいえば、普通は「びくともしない」原子核を分裂させてエネルギーを取り出す技術だ。それを利用した爆弾が原子爆弾で、それを利用した発電所が原子力発電所。
「原子核を分裂させてエネルギーを取り出す」というのは、化学反応などとは本質的に違う現象だ。実際、地球上では(原爆や原発のような)核分裂反応が自然に生じることはなかった(実は、大昔に地下で生じていた痕跡があるんだけど)。原子核の物理学についての理解が進んだところで、こういう反応ができるぞと物理学者が気付いて、そして核分裂の連鎖反応が人工的に実現されたのだ。
人類は火を使いこなして文明に役立てている。もちろん、昔は火なんて使えなかっただろうけど、知能が発達し、手先が器用になったころ、山火事の火なんかをもらってきて自分で利用することを発見したんだろう。他の動物には火は使えないから、これは人類のすごいところだ。
火を生み出している「燃焼」という現象はもちろん化学反応の一種だ。そして、考えてみると、ぼくら人間だって、体のなかでいろいろな化学反応をすることで生きて活動している。つまり、めらめらと燃える火も、化学反応を利用しているという意味では、ぼくら生き物と同じ仲間なのだ。
でも、原子力は根本的なところからして違う。原子力を生み出しているのは、化学反応とは桁違いのエネルギーが関わってくる原子核の反応なのだ。そういう意味で、原子力は人類がもっている他の技術とはずいぶんと違っている。
別に、「違っているから,原子力は悪だ」といった短絡的な話をするつもりはない。ただ、本質的な違いがあることは知っておいてほしい。
原子炉での核反応と放射性廃棄物
原子炉のなかでおきている「核分裂の連鎖反応」について、ごく簡単に説明しておこう。
右の図はウラン 235 の核分裂の模式図だ。まず、ウラン 235 の原子核に中性子という小さな粒子が衝突する。中性子はウランの原子核をすり抜けていってしまうことも多いが、十分に速度が遅いと、かなりの確率でウラン 235 の原子核に吸収される。できあがったウラン 236 の原子核は不安定で、すぐに、二つの原子核に分裂する。出てくる原子核の組み合わせは決まっておらず、いろいろな種類の原子核がでてくる。有名になったヨウ素やセシウムも、こうやって出てくる。
こうやってウランが核分裂するときに、かなりのエネルギーが出る。たとえば、水素分子 2 個と酸素分子 1 個が結合して水分子 2 個になるときに発生するエネルギー(これが、水素が爆発するときに出てくるエネルギーの元だ)と比較すると、ウラン 1 個の核分裂で出てくるエネルギーはおおよそ 4 千万倍だ。もちろん、ウラン 1 個の分裂ででるエネルギーはわずかだが、たくさん集めると、すごいエネルギーになる。発電や爆弾では、核分裂をたくさんおこすことで、そのエネルギーを利用している。
核分裂をたくさんおこすための鍵になるのが、連鎖反応(れんさはんのう)だ。右の図にも描かれているが、ウランが分裂すると、原子核の他に、2, 3 個の中性子が飛び出てくる。これらの中性子が,別のウラン 235 の原子核にぶつかって吸収されれば、それらのウランも核分裂をおこす。すると、そのとき、また中性子がでる。この中性子が、また別のウランにぶつかって・・・ という風に、次々と核分裂をおこさせるのが「核分裂の連鎖反応」。この連鎖反応を一気におこすのが原爆、じょうずに制御しながらじわじわとおこすのが原子力発電所というわけだ。
さて、ウランが分裂したときに出てくる原子核は、みな放射性同位体といわれる種類のものだ。不安定で、崩壊して放射線を出すタイプの原子核だ。これが、原子力発電所の「燃えかす」である「放射性廃棄物」の主成分というわけだ。
3 月 11 日の大地震の直後、福島第一原発の原子炉には制御棒が差し込まれ、ウランの核分裂の連鎖反応は停止した。これは計画通りだった。
連鎖反応がとまったあとにも、原子炉には核分裂の際に生まれた放射性物質がたくさん残っていた。放射性物質は崩壊して放射線を出す際に熱も出す。そのため、原子炉がとまっても放射性物質の発熱は続いた。
そこで一生懸命に原子炉を冷やそうとしたわけだが、それが(特に最初のころには)うまくいかなかった。一時的に冷却がとまったあいだに燃料棒が過熱し、とけ落ちてしまったというわけだ。そして、ウランを閉じ込めていた容器にも問題が発生し、大量の放射性物質がばらまかれたのだ。
原子炉に残った放射性物質からの発熱は(事故当初よりずっと弱くはなったが)今も続いている。これは、放射性物質が崩壊してほとんどなくなってしまうまで、何年間もつづく。止める方法はないし、崩壊を速める方法もない。ひたすら冷やしながら崩壊するのを待つしかないのだ。
原子炉とは別に、原子炉の近くのプール(文字通り、ぼくらが泳ぐプールみたいなところに水がたまっている施設)の中に「使用済み核燃料」が保管してある。使用済み核燃料は、ウランを使い切ったあとの燃料棒で、大量の放射性物質を含んでいる。これも崩壊熱を出し続けるので、せっせと冷やし続けないといけない。
原子炉や使用済み核燃料に水をかけて冷やしていれば、「火が消える」みたいに「崩壊が止まって」おとなしくなるんじゃないかという気がするかもしれない。でも、そういうことはない。冷やそうが冷やすまいが、崩壊は同じように続き、発熱は何年も続く。それでも一生懸命に冷やしているのは、冷やさずに放っておくと原子炉の温度が異常にあがって新たな事故を引き起こしてしまうからだ。現場での崩壊熱との闘いはまだまだ続くのだ(応援しよう)。
今、原子炉のなかではウランの核分裂の連鎖反応はとまっている。たまたま条件が整って再び連鎖反応が始まることを「再臨界」という。
運転中の原子炉でおきているような連鎖反応が本当にはじまってしまうと、きわめて危険だ。これまでとは桁違いの発熱があって爆発の危険性が大幅にたかまるだけでなく、(もっとも危ない)ヨウ素を始めとした放射性物質がまた新たにいっぱい作られてしまうからだ。
ただ、そういう「本格的な再臨界」がおきる可能性は考えなくてよいというのが専門家のほぼ一致した意見のようだ。実際、とけ落ちた燃料のなかでたまたま連鎖反応が始まったとしても、連鎖反応に適した状態がずっと続くとは考えられない。連鎖反応がずっと続く可能性は無視してよいとぼくも思う。
目次 // この事故って / 放射線とか放射能 / シーベルトとベクレル / 放射線と体 / これからの生活 / 原子力発電所
このページを書いて管理しているのは田崎晴明(学習院大学理学部)です。申し訳ありませんが、ご質問やご意見は(Twitter ではなく) hal.tasaki.h@gmail.com 宛てのメールでお願いします。
リンクはご自由にどうぞ。いろいろな人に紹介していただければ幸いです。目次の URL は、/%e3%83%a6%e3%83%8a%e3%82%a4%e3%83%86%e3%83%83%e3%83%89-%e3%82%bb%e3%83%9f%e3%82%b3%e3%83%b3%e3%83%80%e3%82%af%e3%82%bf%e3%83%bc-%e3%82%b8%e3%83%a3%e3%83%91%e3%83%b3-%e6%9c%89%e5%90%8d%e4%ba%ba/です(URL をマウスでおさえて「リンクをコピー」してください)。
このページの各項目に直接リンクするときには、上の目次の項目をマウスでおさえて「リンクをコピー」してください。 詳細については、次の URL をご覧ください。……
日本大百科全書(ニッポニカ)「原子力」の解説
原子力
げんしりょく
atomic power
nuclear energy
原子核の崩壊や変換、核反応などに際して放出されるエネルギー。核エネルギーとも原子エネルギーともいう。原子核の中に巨大なエネルギーが潜んでいることは、20世紀の初め天然に存在する放射性元素の研究によってすでに知られていた。1905年に発表されたアインシュタインの特殊相対性理論は質量とエネルギーの同等性を明らかにした。すなわち1グラムの質量がエネルギーに変換されると90テラジュール(90×1012J)のエネルギーとなり、これは100ワットの電球3万個を1年間点灯し続けうるエネルギーに相当する(ジュールはJと表記する仕事およびエネルギーの単位)。
原子核が形成される際には、それを構成する素粒子の質量の一部が結合エネルギーに変換されて内部に蓄積されている(したがって質量欠損が生じている)ので、それが核反応に際して放出される。その大きさは化学反応のそれの数百万倍に達することが放射能の研究で知られていた。しかしマクロなスケールで大量の核反応をおこさせる方法は、中性子の発見と、それによるウラン原子核の核分裂、および核分裂連鎖反応の発見により初めて実現可能となった。この核分裂に基づくエネルギーの利用は、最初は原子爆弾として実現し、のちに原子力発電などのエネルギー利用へと移行した(以下、原子力発電または原子力発電所を略称して原発とよぶ)。また、水素などの軽い核種が融合してヘリウムなどの重い核種が生成される核融合反応は、水素爆弾として軍事利用目的で開発された。制御された核融合反応の民生利用実現は研究努力が続けられてきたが、いまだ達成されていない。
[中島篤之助・舘野 淳 2016年10月19日]
核反応に伴って放出される核エネルギーが原子1個当り化学反応の数百万倍であるとしても、実用上有用なエネルギーとして取り出し可能となるためには、多くの原子に持続的に反応を行わせるような方法が発見されなければならない。この反応は核分裂という現象の発見によって実現することとなった。核分裂は、ウランなどの重い原子核が中性子の衝撃を受けて、ほぼ質量の等しい二つの原子核に分裂する現象である。たとえば次式のように分裂する。
この際放出されるエネルギーはラジウムのα(アルファ)崩壊の50倍程度であるが、重要なのは核分裂に伴って新たに2~3個の中性子が発生することである。したがってこのように増倍された中性子を有効に利用するならば、次々にウラン原子核の核分裂を連鎖的に行わせることが可能となる。しかし実際にこれを行うには、増倍された中性子が非分裂性の原子核に吸収されたり、外部へ散逸したりして連鎖反応が立ち消えにならないことや、逆に連鎖反応が急速に進みすぎぬように制御することが必要である。天然ウランには核分裂性のウラン235はわずか0.7%しか含まれておらず、残りの99.3%のウラン238はかえって中性子を吸収してしまう。また核分裂の際に発生する中性子の速度は速すぎる(高速中性子)ために、ウラン235原子核と衝突する確率は小さく、速度を熱エネルギー程度にまで遅くした中性子(熱中性子)のほうが核分裂はずっとおこりやすくなる。
したがって、連続的に核分裂反応を持続させるシステム(原子炉)をつくる一つの方向は、天然ウランよりもウラン235の同位体濃度を高めた濃縮ウランを用い、また、中性子の速度を減らすための軽い原子から構成される、重水や軽水(普通の水)、黒鉛などの減速材を用いて、核分裂反応を持続させる方法である。連鎖反応を制御するためには、中性子を吸収しやすい原子核(ボロン10やカドミウムなど)からなる制御材を適切に系内に入れる必要が生ずる。また連鎖反応をおこすためには、含まれる核分裂性物質の量をある程度以上に大きくし、表面から逸出する中性子の割合を小さくしなければならない。この核分裂連鎖反応維持に必要な最小限の質量を臨界量という。原子爆弾の場合には高濃縮ウランあるいはプルトニウムを瞬間的に臨界量以上に合体させることにより連鎖反応を急激に発生させ、きわめて短時間に巨大なエネルギーを放出させる。原子炉においては臨界量を超える量の核分裂性物質であるウランなどで炉心を構成する。原子炉では連鎖反応がおきている場合を臨界状態、停止している場合を未臨界という。
[中島篤之助・舘野 淳 2016年10月19日]
1938年ドイツのO・ハーンとF・シュトラスマンによるウランの核分裂現象の発見は、それまで物質の究極構造の究明という純粋な物理学的興味の対象にすぎなかった核物理学とその成果とを、直接、巨大な核エネルギーの解放という実用問題に結び付ける契機となった。しかもその発見の時期が第二次世界大戦の前夜であったために、この巨大なエネルギーは原子兵器(核兵器)として開発されることになった。
原子兵器開発の研究は、ナチス・ドイツでは早くも1939年から、イギリスでは1940年から開始されていた。しかし第二次世界大戦の激化とともにイギリスでの研究継続は不可能となり、のちにアメリカでの原爆開発計画に合流することになった。
アメリカは、アインシュタイン、フェルミ、シラード、ウィグナーをはじめ多くのナチスに追われた亡命科学者を受け入れたこと、イギリスの研究陣が合流したこと、またその国土が第二次世界大戦中の戦災を免れたこと、もともと卓越した工業力と経済力をもっていたことなどが有利に働いて、極秘のうちにおよそ20億ドル(当時)の巨費と十数万の科学者・技術者を動員したマンハッタン計画(原爆製造計画)に成功して、1945年7月に3個の原子爆弾を完成させることができた。うち1個は同年7月16日ニュー・メキシコ州アラモゴードの砂漠での爆発実験に使用されたが、これは爆縮型のプルトニウム原爆であった。残り2個はそれぞれウラン235原爆とプルトニウム原爆であったが、前者が同年8月6日広島に、後者が8月9日長崎に投下された。
ソ連および日本でも第二次世界大戦中に原子兵器開発研究は進められていた。ソ連は大戦後の1949年には原爆を、1953年には重水素化リチウムを用いた航空機搭載可能なブースター原爆を実験した。ブースター原爆は、ソ連のサハロフが設計したレイヤー・ケーキ爆弾とよばれる、核融合材料を原爆に包み込んだ威力500キロトン相当の爆弾であり、アメリカはこれを乾式水爆と誤認するが、その基礎はすでに大戦中の研究により形成されたものである(ソ連が原子爆弾を熱源として多段階式に核融合をおこさせるテラー・ウラム型の水爆実験に成功したのは、1955年11月22日セミパラチンスク実験場においてであった)。日本では物理学者の仁科芳雄(にしなよしお)が中心となり、理化学研究所などで研究が行われたが、みるべき成果をあげる前に敗戦を迎え、成果も四散してしまった。
マンハッタン計画の遂行によって獲得された原子力技術は、原爆製造のためだけでなく、今日の原子力技術体系の骨格をなす主要な部分をすべて含んでいるといえるので、以下におもな成果を要約しておくこととする。原爆製造の鍵(かぎ)はつきつめていえば、純粋のプルトニウムと高濃縮ウランの一定量をいかにして入手するかに帰着する。
(1)プルトニウムの生産 プルトニウムの生産には原子炉が必要であり、このために核分裂連鎖反応に関する次のような諸問題――中性子の逸出、減速材の作用、同位体濃縮の効果、連鎖反応制御の方法などを研究する、要するに今日の用語でいえば原子炉物理学および原子炉工学を創設し、かつまた実際に原子炉を建設し作動させたこと。ついでそれを一挙にスケール・アップして大型のプルトニウム生産炉を建設・運転させたこと。
(2)原子炉建設に必要なウラン、減速材である黒鉛や重水などを大量に製造する技術を開発したこと。
(3)放射線からの防護手段の開発と健康管理。
(4)ウラン同位元素の濃縮 電磁分離法をはじめ、あらゆる同位体分離法が検討され、ガス拡散法を最後に成功させたこと。
(5)核燃料再処理技術の研究 沈殿分離法によるプルトニウムの抽出法が最初に確立されたこと。
[中島篤之助・舘野 淳 2016年10月19日]
第二次世界大戦の終了とともにアメリカは原子力開発管理体制を戦時中の軍管理から文民管理に切り換えた。すなわち1946年に原子力法(マクマホン法)を採択し、それに基づいて原子力委員会(AEC)を発足させた(1947年1月)。国際的には原子兵器の「管理」を目ざすバルーク案を国連に提出したが、原水爆禁止を優先せよというソ連の反対で実現しなかった。広島・長崎への原爆投下は大戦の終結を早めたというよりは、戦後の米ソ冷戦の開始を示すものであったから、アメリカは戦後になってかえって3波にわたる核軍備の大拡張を行うこととなる。第一波は文民管理のAECの発足と同時に開始され、ワシントン州ハンフォード(マンハッタン計画が推進された地)のプルトニウム生産施設とウラン濃縮工場の改修と拡張が行われ、原子力潜水艦の開発もスタートした。第二波は1950年1月の大統領トルーマンによる水爆開発命令に始まり、1954年の水爆完成に終わる時期で、あらゆる形態の核兵器開発が促進され、ケンタッキー州パデューカに新鋭ウラン濃縮工場が建設された。第三波は1952年から1956年までで、第二波と重なっており、この時期には戦術核兵器の開発を重点に全軍核武装化が追求された。このためオハイオ州ポーツマス新濃縮工場の建設やハンフォード工場の大拡張が行われた。第一号原子力潜水艦ノーチラスは1955年に就航している。アメリカがこの3波にわたる核軍拡に注ぎ込んだ費用は138億ドル(当時)に上り、マンハッタン計画の7倍という膨大なものであった。この止めどもない核軍拡政策は、米ソの「力の均衡」を前提にした軍拡競争へと導いていった。この均衡を前提に、1953年12月アメリカ大統領アイゼンハワーは国連総会で有名な「平和のための原子Atoms for Peace」(「平和のための原子力」ともいう)計画を発表し、備蓄した濃縮ウランの供与と、国際原子力機関(IAEA)の創設を提唱し、アメリカの核戦略はいわゆる平和利用をも含む総合的戦略へと変貌(へんぼう)することとなった。
[中島篤之助・舘野 淳 2016年10月19日]
1955年の夏にスイスのジュネーブで開かれた第1回原子力平和利用国際会議は、初めて原子力の平和利用への扉を開き、軍事機密の厚い壁に遮られていた原子力技術情報の公開を実現した。このため原子力の平和利用に関する楽天的な見通しが世界的に広まり、日本、西ドイツ、ベルギー、イタリア、スペイン、ブラジル、アルゼンチンなどの国々がそれぞれ原子力委員会を創設するに至った。このときまでに原子力技術を開発していた国は、アメリカ、イギリス、ソ連、フランス、カナダの5か国であった。しかし、いずれの国も他国に輸出できる原発技術を完成させていたわけではなく、1960年代前半までに輸出されたのは研究用原子炉やアイソトープ関連技術であった。ただイギリスだけが天然ウランを燃料とする黒鉛減速炭酸ガス冷却型原子炉(コールダーホール型原子炉)による大規模な原発の建設計画を発表していたが、それを輸入したのは日本とイタリアのみで、またこのわずか2基のみが、イギリスの輸出できた商業発電炉であった。
原発の電力生産への利用は、安価な中東原油が大増産されたために抑制されていた。1963年、第3回原子力平和利用国際会議(ジュネーブ会議)が開かれたが、この機会にアメリカは、濃縮ウランの供給保証付きで、リコーバーHyman George Rickover(1900―1986)の開発した原子力潜水艦の舶用炉(加圧水型原子炉:PWR。後に沸騰水型原子炉:BWRが加わる)を発電用に改良したアメリカ型軽水炉が「実証済みproven」であることを宣伝し、世界的売り込みを図った。
[中島篤之助・舘野 淳 2016年10月19日]
アメリカでは、第3回ジュネーブ会議以後、ゼネラル・エレクトリック社、およびウェスティングハウス社などは、海軍用原子炉の開発で蓄積した技術を基礎に、さらに新鋭石油火力発電所との競争を目標として、部品の規格化と量産化、大型化によるスケール・メリットの追求などの手法により発電単価の切下げを図り、同時にアメリカ政府の濃縮ウラン供給保証を武器に、世界的に軽水炉の売り込みを行った。売り込みの手法の一つとして「ターン・キー」方式がある。これは売り手の提示した仕様で建設し、キーを回せばすぐに稼動できるというもので、これによって利便性とコストダウンが図られた。しかしこの方式では、建設地の自然条件などを設計に反映することが困難であるため、初期に建設された数基にとどまった。なお、福島第一原発では「ターン・キー」方式を採用していたため、2011年(平成23)3月11日に日本で発生した東北地方太平洋沖地震に伴う津波被害が拡大し、原発事故につながったという指摘もなされている。
こうして1963年以降、アメリカでは「軽水炉ブーム」が巻き起こされる。しかしこのブームは長くは続かず、1976年には発注はほとんどゼロにまで落ち込むこととなる。この低迷にいっそう打撃を与えたのが1979年のスリー・マイル島(TMI)原発事故であった。アメリカ国内での原発の契約のキャンセルや建設中止はその後も続き、原子力産業界への深刻な影響を憂慮したアメリカ議会の要請により、同議会技術評価局は1984年2月に「不確実性の時代における原子力発電」と題する報告書を公表した。2000年代に入り「原子力ルネサンス」とよばれる原発復権の動きが広がり、アメリカではG・W・ブッシュ政権による新規建設へのてこ入れがなされたが、新設は進まなかった。
ドイツでは2000年、社会民主党(SPD)と90年連合・緑の党との連立政権は、稼動後30年の原発廃止等、脱原発に向けての舵(かじ)をきったが、2010年、キリスト教民主・社会同盟(CDU・CSU)と自由民主党(FDP)連立政権は稼動期間の延長を決めるなど、脱原発派政策は後退した。しかし、2011年3月に日本で福島第一原発事故が起きると、メルケル政権は期間延長を撤回、8基の老朽化原発の即時停止、2022年までに残りの原発についても順次停止を決定した。
[中島篤之助・舘野 淳 2016年10月19日]
原子力の発電以外への応用として重要な分野は、放射線やラジオ・アイソトープ(RI)の応用である。原子炉を用いて、さまざまのRIやコバルト60(60Co)などの放射線源などを大量廉価に生産できるようになったからである。2015年度の統計では、日本のRIまたは放射線発生装置の使用許可・届出事業所数は7515か所に上っている。
RIの使用形態は密封RIと非密封RIとに分けられる。前者ではニッケル63(63Ni)やトリチウム3(3T)などのガスクロマトグラフの検出器などへの利用のような計測的用途や、遠隔照射医療装置やレベル計用の60Coなどの線源としての用途がおもなものである。その他の重要な密封RIは、鉄55(55Fe)、コバルト57(57Co)、クリプトン85(85Kr)、ストロンチウム90(90Sr)、カドミウム109(109Cd)、ヨウ素125(125I)、セシウム137(137Cs)、プロメチウム147(147Pm)、ツリウム170(170Tm)、イリジウム192(192Ir)、金196(196Au)、アメリシウム241(241Am)、カリホルニウム252(252Cf)などである。これに対し非密封RIで使用量のもっとも多いのはテクネチウム99m(99mTc)である。核医学的に広く利用される核種で、親核種であるモリブデン99(99Mo)から、ジェネレーター(分離操作装置)を使って病院内で娘(むすめ)核種である99mTcを抽出・製剤化して用いる。国内で使用されているRIの大部分はイギリス、アメリカ、フランス、カナダなどからの輸入品であるが、日本でも数%程度が生産されている。金額的には核医学用の医薬品が大部分を占めている。核医学利用を大別すれば、RIをトレーサーとして体内に投与し、体外から特定臓器などの機能や形態を調べるインビボin vivo使用法と、抗原抗体反応の特異性を利用するラジオイムノアッセイ、すなわち血中や尿中の微量物質を体外で、試験管中で分析するインビトロin vitro使用法とになる。また、直線加速器、シンクロトロン、サイクロトロン、ベータトロンなどの加速器が悪性腫瘍(しゅよう)の治療などに広く用いられるようになりつつある。またCT技術と結合させたポジトロンCT診断、密封RI線源をX線源のかわりに用いるCTでの樹木の年輪の測定など、さまざまに応用されている。
放射線の利用としては、ジャガイモ、タマネギなどの発芽防止のための照射利用や、注射筒・針などの照射滅菌が実用上重要なものである。放射線のエネルギーを高分子化合物の合成や改質などに利用する放射線化学の分野は、研究としては重要であるにもかかわらず、工業的には他の方法を凌駕(りょうが)することが困難で、当初の期待とは反する状況にある。
[中島篤之助・舘野 淳 2016年10月19日]
第二次世界大戦敗戦後の連合軍の占領下では原子力研究は禁止されていたが、講和条約の発効とともに日本学術会議などの場で原子力研究を開始すべきか否かをめぐる論争が活発に行われた。1954年(昭和29)3月2日、当時改進党に所属した中曽根康弘(なかそねやすひろ)により原子炉築造予算2億3500万円が突如国会に提出され、十分な審議もなされぬままに国会を通過した。この動きが、前年12月の国連総会でのアメリカ大統領アイゼンハワーによる演説「平和のための原子」として明らかにされたアメリカの核戦略の転換、すなわち軍事用に備蓄された濃縮ウランの提供、国際原子力機関創設の提唱、各国との原子力双務協定締結を内容とする政策変更を先取りしたものであったことは、今日では明らかである。しかし偶然にも3月1日は第五福竜丸がビキニ水域においてアメリカの水爆実験によって被災した日でもあった。この事件を契機に、日本の原水爆禁止を求める世論は燎原(りょうげん)の火のように全国民を巻き込み、3000万を超える署名が集まることとなる。一方、日本学術会議は、科学者の意向を無視して提出された原子炉予算に反対するとともに、日本の原子力研究が平和利用に限られる保証として民主・自主・公開の原子力三原則を要求する声明を発表した。1955年に公布された原子力基本法にこの三原則が取り入れられ、日本の原子力開発の基本姿勢が確立した。1956年には同時に原子力委員会が発足し、日本原子力研究所(原研)、原子燃料公社(原燃)などが設立されて開発体制が整えられた。原研では研究用原子炉JRR‐1炉およびJRR‐2炉をアメリカから導入建設し、JRR‐1炉は1957年9月臨界に達した。引き続き天然ウラン重水型のJRR‐3炉の国産化が進められ、舶用炉の遮蔽(しゃへい)試験用としてJRR‐4炉も建設された。原燃公社による人形峠(鳥取・岡山県境)をはじめとする国内ウラン資源の探査や、ウラン金属の製錬なども進められた。
[中島篤之助・舘野 淳 2016年10月19日]
しかし一方では、研究炉の建設や運転経験の蓄積すら十分でない段階で、性急な原発の実用化が推進され、イギリスから天然ウランを燃料とするコールダーホール型原子炉を導入設置するために、主として電気事業者の出資による日本原子力発電(株)が設立された(1957)。この炉は多くの設計変更や技術的困難に遭遇し、茨城県東海村に設置された発電炉(東海1号炉)が全出力運転に到達したのは1967年であり、そのときはすでに軽水炉の導入時代に入り、敦賀(つるが)1号炉(日本原電、1966年4月)、福島1号炉(東京電力、1967年9月)、美浜(みはま)1号炉(関西電力、1967年8月)などが相次いで着工された。天然ウラン炉路線は東海1号炉だけで放棄され、以後は低濃縮ウラン燃料を用いるアメリカの軽水型炉を9電力各社が競って導入する。その後、日立(ひたち)、東芝(以上BWR)、三菱(みつびし)(PWR)などのメーカーが導入技術を基に軽水炉国産技術を確立し、以後毎年ほぼ1基の割合で建設が進められた。
しかし技術的に「実証済み」であったはずの軽水炉は1970年代~1980年代に相次ぐ故障・事故に悩まされ、稼動率は30~40%台にまで低下した。この信頼性の低さは安全性への深刻な懸念を引き起こしたが、1974年1月に暴露された日本分析化学研究所の環境放射能データ捏造(ねつぞう)事件、9月に起こった原子力船「むつ」の放射線漏れ事故と長期間の漂流事件は、原子力安全行政のずさんさを一挙に暴露することとなり、日本の原子力行政体制の再検討を余儀なくさせた。このような状況を打開すべく、三木武夫(みきたけお)内閣の下で、有沢広巳(ありさわひろみ)、田島英三(たじまえいぞう)(1913―1998)、向坊隆(むかいぼうたかし)(1917―2002)など学者を中心とするメンバーによる「原子力行政懇談会」が開催され、原子力行政の改革に関する提言を行った。その結果1978年10月、原子力安全委員会が新設され、原子力基本法の改正も行われた(原子力安全委員会は2012年9月に廃止され、新設の原子力規制委員会に移行)。しかしながらこの改革では通商産業省(現、経済産業省)が推進と規制の二つの権限を掌握する結果となり、規制の独立性が失われることになった。
その後、原子炉材料の改良、運転モードの改善(出力変動を抑えたベースロード運転)などが行われ、応力腐食割れなどによる燃料破損、蒸気発生器細管破損などの事故・故障は減少し、稼動率も向上した。なお、2011年の福島第一原発事故直前には商用原発は54基4896万キロワットと、総発電容量の20%を占めるに至った。
[中島篤之助・舘野 淳 2016年10月19日]
軽水炉が導入される以前、原研などの日本の研究者は、動力炉(発電用原子炉)の自主的な開発を目ざしており、半均質炉、新型転換炉など、さまざまな炉型が提案され、研究が進められていた。しかし、原子力の実用化を急ぐ産業界や政治家の一部は、自主開発・基礎からの積み上げを主張して軽水炉の大量導入に批判的な原研などの研究者の姿勢に不満をもち、これを排除して、「動力炉開発(高速増殖炉開発)のナショナル・プロジェクト」を推進。1967年には原燃を吸収合併した新組織、動力炉・核燃料開発事業団(動燃)が設立された。このプロジェクトには大量の資金が投じられ(高速増殖炉原型炉「もんじゅ」完成までに1兆円)、メーカーへと配分された。1995年(平成7)12月、完成直前の「もんじゅ」でナトリウム漏れ事故が発生した。事故の重大さにもかかわらず、動燃は事故情報の秘匿や虚偽報告を行ったため、厳しい世論の批判を浴びた。その後も相次ぐ不祥事に動燃のあり方や体質の全面的見直しが進められ、1998年9月に解団。同年10月発足の核燃料サイクル開発機構が動燃の事業を引き継いだ。さらに2005年、一連の行政改革によって原研と核燃料サイクル開発機構は統合し、日本原子力研究開発機構となった。
[中島篤之助・舘野 淳 2016年10月19日]
原子炉を中心に、核原料物質の採鉱に始まり、放射性廃棄物の処理・処分に終わる「核燃料のライフ・サイクル」ともいうべき一連の段階を核燃料サイクルという。原発をエネルギー産業として考える場合には、核燃料サイクルの全体について考察する必要がある。さまざまな核燃料サイクルが構想されているが、当面現実化しつつあるのはアメリカなどが採用しているワンス・スルーとよばれる使用済み核燃料をそのまま処分してしまう方法で(これはサイクルではないがワンス・スルー・サイクルとよばれることがある)、これとても放射性廃棄物の処理・処分の見通しが確定したわけではない。以下に各段階の問題点を要約しておく。
(1)ウランの採鉱と精錬 経済協力開発機構(OECD)の原子力機関(NEA)が2年ごとに刊行している『ウラン:資源、生産、需要』によれば、ウランの確認資源量はKgU(キログラム・ウラン)当り採掘コスト130ドル以下の資源が590万2900トンであった(2014年版。数値は2013年1月1日時点)。この数値は、軽水炉などのワンス・スルーだけで消費されるとするなら、石油資源よりも小さい資源であることを意味する。資源の大部分を占めるウラン238をプルトニウムに変換する増殖炉サイクルが完成してのち、石炭に匹敵する大きさの資源になるであろう。ただし、核燃料サイクルで、たとえば100万キロワットの電気出力のPWR炉の年間取替え燃料28トンを得るには、181トンの天然ウランが濃縮工場の原料として必要であり、そのためには10万トン以上の鉱石の採掘が必要である。同出力の石炭焚(だ)き火力発電所の年間石炭所要量はほぼ400万トンであるので、核燃料の重量利得は40倍程度にとどまることに留意すべきである。また、ウランの採鉱は、原子炉の重大事故の場合を除けば、核燃料サイクル中最大の放射線障害を人間に与える可能性がある。それは採鉱に伴うラドンの放出や、尾鉱(選鉱くず)の蓄積に基づく放射線障害などがその原因となる。
(2)ウラン濃縮 核兵器製造用に開発された巨大な濃縮能力により、軽水炉が原発の主流となった。初期にはおもにガス拡散法が用いられていたが、1970年代後半からは遠心分離法が主流となっている。また、化学交換法、レーザー法などの新方法が開発されつつある。これらはいずれも軍事目的に転用可能なことから、核拡散に直結する技術であることに注目する必要がある。
(3)核燃料再処理 PWRの使用済み核燃料の組成は、96%が燃え残りウラン(濃縮度は0.8%以上)、約1%がプルトニウム、約3%が核分裂生成物であり、この三つの部分を分離するのが再処理の工程である。歴史的には核兵器用プルトニウムを抽出するために開発された工程であることから、核拡散に直結していることになる。しかし原子力が未来のエネルギー資源となるためには増殖炉燃料の再処理を含む技術の確立が必要となるであろう。現在は、軍用あるいは低燃焼度のガス炉燃料などを除き、軽水炉の商業用再処理は、技術的に未確立で、採算的にも困難に遭遇している。日本は発生した使用済み核燃料の再処理の大部分をフランス、イギリスに委託していた。1993年(平成5)に着工した日本原燃(株)の六ヶ所(ろっかしょ)再処理工場は、2006年アクティブ試験(操業前の最終段階の試験)を経て、本格操業に入る予定であったが、最終部分の高レベル放射性廃棄物ガラス固化施設が故障し、その修理が困難であるため、2016年時点においても操業開始に至っていない。このため、六ヶ所再処理工場に搬出を予定していた各地の原発の使用済み核燃料は行き場を失い、各原発施設内の貯蔵施設に蓄積しており、原発によっては貯蔵施設の余裕がなくなったものも出ている。
(4)高レベル放射性廃棄物の処理・処分 高レベル放射性廃棄物の最終処分の方法は未確立である。軍事利用のためにすでに蓄積された高レベル放射性廃棄物の量は、蓄積される平和利用のそれの10倍を超えると推定されている。これらは現在大部分が鋼製タンクに貯蔵されたままである。再処理後の廃液をガラス固化体とし、ステンレス容器などに封入する方法が採用されている。国際学術連合会議(ICSU。現、国際科学会議)は最終処分法として安定な地層(岩体)への埋設について留意すべき事項を勧告しているが、地層への熱影響を緩和するために、100年程度の中間貯蔵(地上での)を推奨している。これは、再処理を行わず、使用済み核燃料のまま貯蔵する場合にも適用できる。いずれにせよ、もっとも困難な問題は、科学的に安定な閉じ込めが予見されえたとしても、社会的受容が得られるか否かにある。
日本で発生した使用済み核燃料のうち、軽水炉燃料5000トンおよびガス炉(コルダーホール型原子炉)燃料1500トンが、イギリスおよびフランスに送られ海外再処理が行われた。これらから発生した高レベル放射性廃棄物のガラス固化体が返還されている。フランスからは2007年3月までに1310本の固化体が返還済みであり、イギリスからは2010年3月以降、8000トンの返還が始まっている。これらは一時的に六ヶ所村の高レベル放射性廃棄物管理センターに保管され、のちに地層処分されることになっている。
(5)再処理工場のプルトニウム 再処理工場で分離精製されたプルトニウムもまた大量に蓄積されている。2014年末時点で、国内保管分1万0835キログラム、海外保管分3万6974キログラム、合計4万7809キログラムあり、本来使う予定であった高速増殖炉が稼動していないため、行き場を失って蓄積量が増加している。政府はこれをMOX燃料(ウラン・プルトニウムの混合酸化物燃料)として軽水炉で燃やすこと(プルサーマル)を推進しようとしているが、これを使い切ることは容易ではない。
(6)低レベル放射性廃棄物の処理・処分 容積の小さい高レベル放射性廃棄物と対比すれば、低レベル放射性廃棄物の放射能レベルは低いかわりに容積が大きいことが特徴である。日本でも、2008年3月末時点ですでに60万本を超えるドラム缶(200リットル入り)が貯蔵されている。海洋投棄と陸地処分が方策として考えられていたが、太平洋への投棄は政治的・社会的理由で困難となり、陸地処分が検討されている。2016年1月時点で、青森県六ヶ所村に建設された低レベル放射性廃棄物埋設センターには、約28万本のドラム缶が埋設され、最終的には300万本規模に拡張される予定となっている。
(7)輸送問題 たとえば核燃料サイクルの各段階は、実際には輸送手段で結ばれている。とくに使用済み核燃料の海外輸送、返還される高レベル放射性廃棄物固化体などの高放射性物質や、プルトニウムの輸送などは、核拡散防止問題も絡んで複雑な社会問題となっている。1984年夏に生じた六フッ化ウランを積んだモン・ルイ号(フランス)の沈没は、秘密のベールに包まれていた核物質輸送の危険性の一端を明らかにした。また、1987年2月に核物質防護に関する条約(核物質防護条約。核物質防護はフィジカル・プロテクションphysical protectionといい、略称はPP)が発効し、プルトニウムの輸送などに対しては厳重な防護措置が必要となった。こうして1992年11月フランスから約1トンのプルトニウムを積んだ輸送船「あかつき丸」の護衛のために、新たに海上保安庁の巡視船「しきしま」が163億円を投じて建造された。しかし「しきしま」の軽武装では核ジャック対策には不十分であるとして、通過海域の担当アメリカ海軍にアメリカ国防省が万一の場合の対応を通達したという。
2012年、日本学術会議は原子力委員会からの審議依頼を受けて、「高レベル放射性廃棄物の処分について」と題する回答を発表した。このなかで日本学術会議は「高レベル放射性廃棄物の処分に関する政策の抜本的見直し」「科学・技術的能力の限界の認識と科学的自律性の確保」などをあげて、地層処分の実施を急ぐことにブレーキをかけている。
[中島篤之助・舘野 淳 2016年10月19日]
原子力技術の開発が軍事利用から始まった歴史が示すように、いわゆる平和利用技術の世界的拡散は必然的に核情報と核分裂性物質の拡散をも意味する。核兵器保有国も、アメリカ、ロシア(ソ連時代を含む)、イギリス、フランス、中国の5か国のほか、1974年にインド、1998年にはインドとパキスタン、2006年には北朝鮮(朝鮮中央通信が発表)が相次いで核実験を行うなど増加しつつある。1970年にアメリカとソ連(当時)の合意のもとに核不拡散条約(NPT)が成立し、2015年2月時点では191か国が加盟するに至った。しかし同条約は一方で核兵器保有国に核軍縮の実行を義務づけてはいるものの、米ソ間の核軍拡競争(核兵器の垂直拡散)はとどまるところを知らず、他方では核拡散(水平拡散)のおそれがあるとして非核兵器国の原子力平和利用にさまざまな制限を設ける結果となるという大きな矛盾を内包している。加盟国は核物質の計量管理制度を設けるとともに、国際原子力機関の査察を受け入れることなどを内容とする保障措置協定を締結する義務を負わねばならない。しかし1974年インドの行った核爆発実験はNPTの有効性に疑問を抱かせることとなり、とくにアメリカの受けた衝撃は大きかった。その結果アメリカの核不拡散政策は著しく強化され、とくにカーター政権時代になると核不拡散法が国内法として制定され、核物質や核技術の輸出に強い規制が加えられるとともに、高速増殖炉計画の中止や商業再処理の禁止などが各国に呼びかけられた。アメリカの提供する濃縮ウランを再処理する場合にはアメリカの同意が必要という日米原子力協定の条項を盾に、動燃(当時)の東海再処理工場の運転をめぐって日米間で長期にわたる核燃料交渉が行われるに至ったのもそのためである。また核燃料サイクルを核拡散防止の観点から国際的に評価し直すことを目的として、国際核燃料サイクル評価会議(INFCE:International Nuclear Fuel Cycle Evaluation)が1977年から1980年2月にかけて開かれ、最終的には59か国、6国際機関が参加した。その結論は玉虫色の典型ともいうべき内容であるが、保障措置の改良や強化、プルトニウム貯蔵や使用済み核燃料管理などの新国際制度を設けることなどがうたわれている。
このほか核関連物質・資材などの非核兵器国への輸出に際して適用される規制規準として1975年にロンドン・ガイドラインが定められた。またPP条約が1980年3月に署名のため開放され、日本は1988年11月に加入した。
核軍拡を放置したままのNPT体制、ひいては原子力平和利用の矛盾は深まる一方である。
[中島篤之助・舘野 淳 2016年10月19日]
1960年代後半から大量に原発が建設されたアメリカでは、1970年代初頭に原発をめぐる環境問題・安全論争が激化した。1971年コロンビア特別区の控訴裁判所は、原子力委員会(AEC)が国家環境政策法(NEPA:The National Environmental Policy Act)に違反しており、原発建設に際しては環境影響評価書を提出すべきであるとの判決を下した(メリーランド州にあるカルバート・クリフス原発建設に伴う裁判であったことから、「カルバート・クリフス判決」とよばれる)。AECはこれに従ったが、クラス9とよばれる巨大事故についての評価書は提出しなかった。クラス9事故は、のちにシビアアクシデント(過酷事故)とよばれるようになる。環境保護庁(EPA:Environmental Protection Agency)はクラス9事故に対しても提出するよう求めたため、AECはこのような事故はきわめてまれにしか起きないことを証明する必要に迫られた。このようにしてつくられたのがラスムッセン報告である。同報告は、アメリカの物理学者ラスムッセンNorman Carl Rasmussen(1927―2003)が作成したもので、原発事故で人が死ぬ確率は、隕石(いんせき)の落下によって死ぬ確率よりも小さいと主張されていた。これに対して、アメリカの科学者団体「憂慮する科学者同盟」(UCS:Union of Concerned Scientists)は、同報告では、地震などで各種安全装置が一斉に破壊される共通要因事故を考慮していないなど、多くの問題があることを指摘した。福島第一原発事故ではまさに、地震・津波によりこの共通要因事故が発生した。
また当時、配管破断などで原子炉内の冷却材が漏出した場合(冷却材喪失事故)に、炉心を冷却する緊急炉心冷却装置(ECCS)によってかならずしもうまく炉心冷却ができない可能性があるという試験結果が発表され大きな問題となった(ECCS問題)。さらに1990年、確率論の手法を用いて発電所の停電(ステーション・ブラックアウト)が炉心溶融事故の大きな要因になりうることが指摘された。福島第一原発事故では、地震による外部電源の喪失、津波による非常用ディーゼル発電機の機能喪失でステーション・ブラックアウトが起き炉心溶融に至った。
このように安全論争や研究に基づく警告がなされるなかで、現実に1979年スリー・マイル島原発事故、1986年チェルノブイリ原発事故の二つのシビアアクシデントが発生した。シビアアクシデントとは設計基準事故(設計者があらかじめ事故を想定しこれに対応するために設置した安全装置で収束できる事故)を超えて、炉心に重大な損傷を生じる事故である。この二つの事故を受けて、アメリカやヨーロッパでは、シビアアクシデント対策の重要性が強調され、その対応が法制化されるに至った。これまでの多重防護の三層の壁(異常発生の防止、異常の事故への拡大防止、事故の影響を最小限に食い止める)に加えて、シビアアクシデント対策の二層の壁(著しい炉心損傷防止、放射能の放出抑制・避難など)を加えた五層の壁(レベル)をもつ深層防護に基づく安全対策の法規制が行われるようになった。このようにして世界の原発はシビアアクシデントの発生を前提にして稼動している。
[舘野 淳 2016年10月19日]
各地に原発が建設されるようになる1970年代初頭、日本でもその安全性をめぐって多くの議論が行われた。軽水炉の大量導入・建設を批判した原研などの研究者の発言に対して政府・原研当局は強権的抑圧を行い、人事考課などでこれを組織的に排除したが、これが、福島第一原発事故後に「原子力村」として厳しく批判された、日本の、異論を排除した推進体制、産官学癒着体制へとつながっていく。さらに、日本科学者会議、高木仁三郎(じんざぶろう)(1938―2000)を中心とした原子力資料情報室や、京都大学原子炉実験所の研究者、あるいは各地の住民組織などが、安全性に問題を抱え、放射性廃棄物の処分を先送りしたままの軽水炉の拡大路線に対して、さまざまな批判を行った。政府は形式的な公聴会を開催して住民の意見を聞くなどの措置をとりながら、原発の拡大を着々と進めていった。
1988年から1990年、規制問題などを検討していた原子力安全委員会・共通問題懇談会の席上で、スリー・マイル島原発事故、チェルノブイリ原発事故ののち海外の動向を考慮した学者グループが、シビアアクシデント対策を日本でも取り入れて法整備を行うことを提案したが、東京電力・関西電力などの事業者が強硬に反対したため、法的規制としては実施できず、事業者の自主対応に任せることとなった。法的規制のもと、シビアアクシデント対策が十分になされていれば、福島第一原発事故の際にどれほど被害を減らすことができたかは、一概にはいえないが、少なくとも注水や格納容器ベントによる減圧などがより速やかにできて、炉心損傷に至らなかった可能性もゼロではなかったと考えられる。国会事故調査報告書はこのような規制のあり方を、「東電・電事連の〈虜(とりこ)〉となった規制当局」と表現している(東電は東京電力、電事連は電気事業連合会の略)。
いったん熱の制御を失うと、短時間で炉心溶融へと突き進む軽水炉という原子炉、炉心溶融が起きると大量の放射能が放出され、住民が重大な被害を受ける原子力というエネルギーシステム、危険物を扱いながら、その自覚のなかった電気事業者、その事業者に対する規制を怠った政府・規制当局、こうした要因が重なって福島第一原発事故は発生したということができるだろう。
[舘野 淳 2016年10月19日]
『リチャード・ローズ著、神沼二真・渋谷泰一訳『原子爆弾の誕生――科学と国際政治の世界史』上下(1993・啓学出版)』▽『リチャード・ローズ著、小沢千重子・神沼二真訳『原爆から水爆へ――東西冷戦の知られざる内幕』上下(2001・紀伊國屋書店)』▽『憂慮する科学者同盟(UCS)編・日本科学者会議原子力問題研究委員会訳『原発の安全性への疑問――ラスムッセン報告批判』(1979・水曜社)』▽『川上幸一著『原子力の光と影――20世紀を演出した技術』(1993・電力新報社)』▽『中島篤之助・安斎育郎著『原子力を考える』(1983・新日本出版社)』▽『日本科学者会議編『原子力発電――知る・考える・調べる』(1985・合同出版)』▽『桜井淳著『原発事故の科学』(1992・日本評論社)』▽『吉岡斉著『原子力の社会史――その日本的展開』(1999・朝日選書)』▽『舘野淳・野口邦和・青柳長紀著『徹底解明 東海村臨界事故』(2000・新日本出版社)』▽『佐藤一男著『改訂 原子力安全の論理』(2006・日刊工業新聞社)』▽『舘野淳著『廃炉時代が始まった この原発はいらない』復刊版(2011・リーダーズノート)』▽『山崎正勝著『日本の核開発 1939~1955――原爆から原子力へ』(2011・績文堂出版)』▽『原子力技術史研究会編『福島事故に至る原子力開発史』(2015・中央大学出版部)』▽『武谷三男編『原子力発電』(岩波新書)』▽『高木仁三郎著『原発事故はなぜくりかえすのか』(岩波新書)』▽『市川富士夫・舘野淳著『地球をまわる放射能――核燃料サイクルと原発』(1986・大月書店)』▽『日本科学者会議原子力問題研究委員会編『Q&A プルトニウム』(1994・リベルタ出版)』▽『清水修二・舘野淳・野口邦和編『動燃・核燃・2000年』(1998・リベルタ出版)』▽『土井和巳著『日本列島では原発も「地層処分」も不可能という地質学的根拠』(2014・合同出版)』▽『W・マーシャル編・住田健二監訳『原子力の技術』1~6(1986~1987・筑摩書房)』▽『浅田忠一他監修『新版 原子力ハンドブック』(1989・オーム社)』
出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例
.